correction voir le lien
9rayti.tn
الخميس، 5 أبريل 2012
2eme secondaire
a. Comment s’appele la famille de la première colonne du tableau périodique ?
b. Quel est l’élément chimique de cette famille dont la couche électronique externe est la couche L ?
c. Interpréter les ressemblances et différences entre les formules des espèces chimiques suivantes : NaCℓ,
CsCℓ et CaCℓ2.
d. On dit que l’élément H n’appartient pas à cette famille. Parmi les énoncés suivants, indiquer en justifiant ceux qui confirment cette appartenance, et ceux
qui l’infirment :
– La formule du chlorure d’hydrogène est HCℓ ;
– Les espèces chimiquesCNa4 etCLi4 n’existent pas.
– Dans les conditions habituelles de température
et de pression, les espèces chimiques de formule NaCℓ, KCℓ et CsCℓ sont des solides, alors que HCℓ est un gaz
الأربعاء، 11 مايو 2011
Exercice cinétique chimique
On plonge une quantité m = 6,5 g de zinc dans un volume V = 500 mL d’une solution de diiode de concentration molaire C = 3,4x10-3 mol.L-1. On maintient une agitation constante.
Le zinc appartient au couple Zn2+(aq)/Zn(sd) et le diiode au couple I2(aq)/I-(aq)
Donnée :M(Zn)=65g/mol
1. Ecrire l’équation de la réaction d’oxydoréduction qui se produit quand on met en présence la lame de zinc et le diiode. Qu’appelle-t-on « oxydant » ? identifier l’oxydant parmi les réactifs
2. Établir un tableau d’avancement de la transformation. En déduire la valeur de l’avancement finale
3. Ecrire l’expression de la constante d’équilibre K associé à la réaction précédente. Calculer sa valeur.
4. Donner l’expression de la vitesse volumique d’une réaction en fonction de l’avancement x de la réaction. Préciser les unités des grandeurs mises en jeu.
5. Exprimer cette vitesse en fonction de.[I-(aq)]. Justifier
6. Le tableau donne, en fonction du temps, les valeurs de l’avancement, ainsi que celles de sa dérivée par rapport au temps :
*****************************correction*************************************
1- Zn + I2 === Zn2+ + 2I-
2- n1 =m/M = 6.5/65 = 0.10 mol
t (min) | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
x (mmol) | 0 | 0,50 | 0,80 | 1,05 | 1,2 | 1,35 | 1,45 | 1,50 | 1,55 |
dx/dt (mmol/mn) | 0,60 | 0,20 | 0,15 | 0,10 | 0,08 | 0,06 | 0,04 | 0,025 | 0,025 |
6.1. Tracer la courbe de l’avancement au cours du temps x = f(t)
6.2. Déterminer la vitesse volumique de la réaction étudiée à la date t = 6 min.
6.3. Comment varie cette vitesse au cours du temps (justifier)?
6.4. Donner une interprétation microscopique de cette évolution.
6.5. Définir le temps de demi réaction. Déterminer graphiquement sa valeur.
6.6. Comment évoluent le temps de demi réaction et l’avancement final si on augmente la température du milieu réactionnel ? Représenter l’allure de la courbe x = f(t) sur le graphique réalisée en 6.1. pour cette situation
6.7. Comment évoluent le temps de demi réaction et l’avancement final si on double la concentration de diiode ? Représenter l’allure de la courbe x = f(t) sur le graphique réalisée en 6.1. pour cette situation
*****************************correction*************************************
1- Zn + I2 === Zn2+ + 2I-
oxydant = espèce chimique capable de capter un ou plusieurs électron
L’oxydant est I22- n1 =m/M = 6.5/65 = 0.10 mol
n2 = C.V=3.4 .10-3 . 0.500 =1.7 10-3mol
équation de la réaction | Avancement (en mol) | Zn | + | Zn2+ | 2I- | | |
Etat initial | 0 | n1 | | n2 | | 0 | 0 |
Etat en cours de transformation | X | n1 - x | | n2 - x | | x | 2 . x |
Etat final | xf | n1 - xf | | n2 - xf | | xf | 2 . xf |
soit Zn est le réactif limitant, alors xf1 = 0,10 mol
soit I2 est le réactif limitant, alors xf2 = 1,7.10-3mol
xf2 < xf1 donc le réactif limitant est I2 et xf = 1,7.10-3mol3- [ Zn2+]eq [I-]2.aq
K= -------------------
[I2]aq
[I2]aq®0 |
4- v=( 1/v ). (dx/dt) et v en mol/l/s
5- on a [I-]= n( I- ) /dt =2x/dt donc v =(1/2).d.[I-]/dt
6-1-
6-2- v(t=6mn)=(1/v).(dx/dt)t=6mn (1/0500).0.10=0.20mmol.L-1.mn-1
6-3 v dimunu quand t augmente car (dx/dt) = pente de la tangente à la courbe x(t) décroît quand t↑
6-4- Quand x↑ le nombre de chocs efficaces entre réactifs est de plus en plus faible
6-5 t1/2 = durée à la réaction pour atteindre la moitié de xf
t1/2 = 4 min 27 s
justification graphique6-6 -Quant T↑ : t1/2 ¯ et xf ®
Représentation graphique (respect de t1/2 et respect de xf)
Représentation graphique (respect de t1/2 et respect de xf)
6-7 -Quand [I2]↑ : t1/2 ¯ et xf ↑ (car I2 est le réactif limitant)
Représentation graphique (respect de t1/2 et respect de xf)
الأحد، 8 مايو 2011
fiche de révision : Oscillateur mécanique forcé Méthode de Fresnel
L'équation différentielle du mouvement est:
avec m: masse de solide
k : constante de raideur de ressort
x : position de solide
f : force de frottement
F0: force de l’excitateur
ⱳ : pulsation de l’excitateur
- k x : est la force de rappel

on cherche des solutions de la forme: 

avec la même fréquence de l’excitateur on a la vitesse de mouvement on a :
on remarque bien que la vitesse est en quadrature avance sur l'élongation 



on remarque aussi que l'accélération est en opposition de phase avec l'élongation
donc notre équation est 

on remplace l'élongation la vitesse et l'accélération dans l'équation différentiel on trouve

a chaque partie de cette équation on associe un vecteur tournant
on trouve le diagramme suivant
Le théorème de Pythagore permet d'écrire



si on néglige les forces de frottement on aura

et on aura aussi

on peut conclure que les forces de frottement qui font le déphasage
الثلاثاء، 3 مايو 2011
correction Examen du baccalaureat, session de juin 2010, science de l'informatique le 27 mai 2010 à 8h30
program min_max;
uses wincrt;
type
fich = file of byte;
var
f:fich;
n:byte;
pn,gn:string;
(*la defintion de la procedure remplir*)
procedure remplir(var f:fich; var n:byte);
var
i,x:byte;
begin
repeat
write('donner n:');
readln(n);
until(n>2)and(n<=50);
rewrite(f);
for i:= 1 to n do
begin
x := random(9) + 1;
writeln(x);
write(f,x);
end;
close(f);
end;
(*la defintion de la procedure construction_nombre*)
procedure nombres(var f:fich;n:byte; var pn,gn:string);
var
x,k,j,i:byte;
c:string;
begin
reset(f);
read(f,x);
str(x,c);
pn := c;
gn := c;
for i:= 2 to n do
begin
read(f,x);
str(x,c);
j := 1; k:=1;
while(c < gn[j])and( j <= length(gn) )do
begin
j := j + 1;
end;
insert(c,gn,j);
while (c > pn[k]) and (k <= length(pn) ) do
begin
k := k +1;
end;
insert(c,pn,k);
end;
writeln('le plus grand nombre:',gn);
writeln('le plus petit nombre:',pn);
close(f);
end;
(*la defintion de la procedure verif*)
procedure verif(gn:string);
var
i,j,k,ci,cj:byte;
r,r1,av,nv:integer;
er:integer;
begin
i := 1;
j := length(gn);
val(gn[i],ci,er);
val(gn[j],cj,er);
av := ci - cj;
i := i + 1;
j := j - 1;
val(gn[i],ci,er);
val(gn[j],cj,er);
nv := ci - cj;
r := nv - av;
r1 := r;
k := length(gn);
while( i < k div 2 )and(i+j = k+1) and (r1 = r) do
begin
av := nv;
i := i + 1;
j := j - 1;
val(gn[i],ci,er);
val(gn[j],cj,er);
nv := ci - cj;
r1 := nv - av;
end;
if (r1 = r)then
writeln('la suite est arithmétique, son raison = ', r)
else
writeln('cette suite n''est pas arithmétique.');
end;
(*Le programme principal*)
begin
assign(f , 'c:\bac2010\123456\nombres.dat');
randomize;
remplir(f,n);
nombres(f,n,pn,gn);
verif(gn);
end.
série d'exercices algorithmique 3SI (Enoncé + correction)
Exercice 7 :
Ecrivez un programme qui lit un nombre décimal positif au clavier et qui calcule la valeur de ce nombre arrondie au centième inférieur, puis l'affiche.
Exemple : 42.2135789 à 42.21
Solution
program Serie1Ex7;
uses wincrt;
var
x:real;
begin
writeln('Donner le réel x');
readln(x);
x:=(round(x*100))/100;
writeln(x:6:2);
end.
الاشتراك في:
الرسائل (Atom)